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Response to selection for grain and biological yield in early segregating generations of spring x win-
ter wheat.

C.N. Mishra, K. Venkatesh, S. Kumar, V. Tiwari, and I. Sharma.

The wheat grown in India is of the spring type mainly guided by agro-geographic factors. Winter wheats possess a wide 
diversity for yield and other traits associated with high yield per se and resistance to major biotic and abiotic stresses. In 
order to enhance the productivity of spring wheats, winter types can be a great source of variability. Because there is no 
crossability barrier between the two ecotypes, hybridization is easily carried out by synchronizing the flowering time.

The higher productivity associated with winter wheats is due to the larger quantity of biomass they produce. 
Because the major area under wheat worldwide is occupied by spring wheats, one way to obtain yield enhancement in 
spring wheat is through introgressing traits for higher biomass production from winter wheats. CIMMYT, Mexico, has 
successfully utilized ‘winter x spring’ hybridization for yield enhancement in spring wheats. Furthermore, the recent 
spring wheat cultivars, which have been released in different countries have higher biomass in comparison to the culti-
vars of the 1980s and 1990s.

Two, exotic, winter wheat lines (EC 609401 and EC 609402) obtained from the Germplasm Unit at the Direc-
torate of Wheat Research (DWR), Karnal, India, were sown in first week of October, 2010, to synchronize heading with 
early maturing, spring wheat cultivars that were sown in late December. These winter wheat lines were used as female 
parents in crosses with the advanced spring wheat lines PBW658, HD3059, WH1125, PBW672, DBW71, and DBW92 
to generate F1s. Five spikes were used as the female parent for each cross. Cross seed was grown in an open field during 
the winter of 2011 at Karnal and the seed harvested from the F1 plants was divided into two lots; half was planted in an 
off-season nursery located at DWR Regional Station, Dalang Maidan (Himachal Pradesh), during May 2012. From the 
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F2 plants grown during the off season, only spring type plants were selected. The harvested seed was bulked for genera-
tion advancement. During the 2012–13 crop season, seed of the previous season’s F1 plants (F2 generation seed) and the 
bulked F2 seed obtained from off season nursery (corresponding to F3 generation seed) were planted together. In all, eight 
F2s and eight F3s were space planted at Karnal, in plots of six 5-m rows with row spacing of 20 cm. The seed was placed 
5 cm apart in all rows of each plot. All recommended agronomic practices were adopted to raise the crop.

Biological yield (kg/plot) was measured as the total aerial biomass on dry weight basis produced for the inner 
four rows plus the biomass of individual plants selected in each cross. The grain yield (gm/plot) of the whole plot and 
selected plants was measured after threshing. The response to selection was determined as the difference between the 
phenotypic value for the traits biological yield and grain yield in selected population (F3) and base population (F2).

The realized gain under selection varied from –1.18 kg (EC609401/PBW658) to 2.95 kg (EC609402/DBW71) 
for biological yield (Table 1).  For grain yield, response to selection ranged from –589.60 g (EC609401/WH1125) to 
1,025.00 g (EC609402/PBW672). All eight crosses except one (EC609401/PBW658) showed a positive response to 
selection for biological yield. In most of the crosses, the positive response for biological yield was associated with a 
negative response with grain yield. The negative response in grain yield in crosses may be due to rejection of winter 
types in the F2 generation in the segregating population grown at off season. However, in segregating populations of 
‘EC609402/PBW672’ and ‘EC609402/DBW71’, we observed a positive response to selection for both biological and 
economic yield. 
These populations 
will further be sub-
jected to selection 
pressure for spring 
types and, hence, 
used to study the 
response to selec-
tion in advanced 
generations. We 
concluded that 
biological yield 
could be used as 
selection criterion 
in early filial gen-
erations in winter x 
spring hybridization programs.

Increasing water productivity through matriconditioning and seed sprouting in wheat.

Raj Pal Meena, S.C. Tripathi, S.C. Gill, R.S. Chhokar, Anita Meena, and R.K. Sharma.

The wheat crop is mainly grown under irrigated conditions. Future projections estimate that by 2050 per capita water 
availability will decrease to 1,190 M3/year from present 1,545 M3/year. In India, 90 % area of the wheat is irrigated, 
which also includes the area with restricted irrigation; only 10% of the area is rain-fed. In the future, the major challenge 
will be to produce more food with less water as share of water for agriculture decreases. Therefore, the biggest challenge 
is to improve water productivity in existing systems. The present water productivity of wheat is 800–1,000 L water/kg 
wheat grain, which needs to be decreased in order to improve the water use efficiency. This investigation was undertaken 
to reduce the presowing irrigation requirement of the wheat crop and understand the effect of matriconditioning (seed 
priming with distilled water) and seed sprouting on crop establishment under different soil moisture regimes.

materials and methods. A field experiment was conducted in a split-plot design with three replications during the 
winter of 2010–11 and 2011–12 at the Directorate of Wheat Research, Karnal (Haryana). The experiment was comprised 
of three main plot treatments; M1, seeding at optimum moisture level (17.5%), M2, seeding at suboptimal moisture 
(10.9%), and M3, seeding in dry soil followed by irrigation (6.2%); and three subplot treatments, S1, no seed priming, 
S2, matriconditioning seed priming, and S3, sprouted seed. Soil moisture content was estimated following a gravimetric 

table 1. Response to selection for biological (kg/plot) and grain yield (g/plot) in early segregat-
ing generations of spring x winter wheat.

pedigree

biological yield grain yield

f2 f3

response to 
selection f2 f3

response to 
selection

EC609401/PBW658 6.42 5.24 –1.18 821.4 1,692.7 871.3
EC609401/HD3059 6.30 7.02 0.72 2,117.2 1,707.7 –409.5
EC609401/WH1125 4.56 6.84 2.28 1,636.3 1,046.7 –589.6
EC609402/PBW672 5.24 5.77 0.53 1,581.4 2,606.4 1,025.0
EC609402/DBW71 4.68 7.63 2.95 1,472.5 1,737.0 264.5
EC609402/HD3059 6.74 6.78 0.04 2,299.5 1,781.4 –518.1
EC609402/PBW658 6.00 6.33 0.33 1,876.1 1,787.4 –88.7
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method (Black 1965). Rainfall received at the experimental site was 129.7 mm during 2010–11 and 36.3 mm during 
2011–12. The climate is subtropical, with the mean maximum temperature ranging in between 34–39°C in the summer 
and mean minimum temperature ranging in between 6–7°C in winter.

Matriconditioning was in gunny bags as described by Basra et al. (2003). The gunny bags were soaked over-
night in distilled water and then spread on a perforated floor. After leaching excess water from the gunny bags, seed was 
uniformly layered between them. The gunny bags were kept moist for the whole treatment period, i.e., 12 hours. For 
sprouting, the required quantity of seed was soaked in water for 10 hours, and then they were spread uniformly on a wet 
bag and covered with another bag for 12–14 h. The soil in the experimental field was sandy clay loam with at pH 7.9 
(1:2.5 soil to water). The soil had an organic carbon content of 0.4 %, available N was 190 kg/ha, P was 17.8 kg/ha, and 
K ws 165 kg/ha at beginning of the experiment. Recommended doses of fertilizer (150:60:30 kg N, P2O5, and K2O/ha) 
were applied as part of nutrient management. Full doses of P and K and a one-third dose of N through urea and the NPK 
mixture (12:32:16) were applied at sowing, and the remaining N was applied equally in two parts at the first and second 
irrigations. The cultivar DBW17 was sown on 18 November, 2010, and 6 November, 2011. The seed was sown in rows 
20 cm apart at a seeding rate of 100 kg/ha. For the treatment in dry soil followed by irrigation, a light irrigation (40 mm) 
was applied soon after seeding. The first irrigation (60 mm) was applied uniformly to all treatments at the crown root 
initiation stage (22 days after sowing). Subsequent irrigations were applied at all critical growth stages. Irrigation was 
done with the help of a water pump. Other management practices were adopted as per recommendations of the crop un-
der irrigated conditions in North Western Plains Zone of India. The number of effective tillers/m2 from the center of each 
plot was measured at maturity. Plant height (cm) was recorded by measuring the height of 10 random plants from each 
plot. A random sample of 10 spikes was taken from each plot to determine spike length at maturity. A net plot of size 6 
m2 was harvested manually to obtain biomass and yield data. Grain was randomly selected from each subplot to calcu-
late 1,000-kernel weight. SAS version 10.3 was used to analyze the observations and differences; means were further 
grouped into significant classes by Duncan’s New Multiple Range Test at P = 0.05.

results. Sowing sprouted seed 
sowing produced significantly 
higher grain yield (54.87 q/ha) 
compared to matricondition-
ing (53.01 q/ha) and unprimed 
seeds (50.24 q/ha) (Table 2.).  
The effect of seeding method 
was statistically nonsignificant; 
seeding at optimum moisture 
level (52.77 q/ha), seeding at 
sub optimal moisture level 
(52.02 q/ha), and seeding in 
dry soil followed by irrigation 
(53.32 q/ha). Because seed 
germination is a major limit-
ing factor in crop establish-
ment under moisture-deficient 
conditions, matriconditioning 
(priming with plain water) and 
sprouted seed improved ger-
mination, seedling growth, and 
crop establishment. Priming 
with plain water and sprouted seed are simple and inexpensive and can increase crop establishment under suboptimal soil 
moisture conditions. Priming and sprouting can be successfully used in areas of water deficit. Sowing also can be done 
without presowing irrigation in the North Western Plains Zone.
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table 2. The effect of seed priming and seeding method on crop establishment, 
growth, and yield of wheat during crop years 2010–11 and 2011–12 (pooled 
analysis). Treatments were M1, seeding at optimum moisture levels; M2, seeding at 
suboptimal soil moisture levels; and M3, seeding in dry soil followed by irrigation. 
Subtreatments were S1, no seed priming; S2, seed priming; and S3, sowing sprouted 
seed.

treatment

no. of 
tillers/

m2

spike 
length
(cm)

plant 
height 
(cm)

biomass  
(q/ha)

grain 
yield

(q/ha)

1,000-
kernel 

weight (g)
a. seeding method
M1 491.73 10.24 87.76 124.87 52.77 38.88
M2 456.94 10.15 88.37 124.17 52.02 38.42
M3 499.53 9.53 88.01 127.86 53.32 38.77
LSD (P = 0.05) 28.51 NS NS 0.79 ns ns
b. seed priming
S1 464.98 9.61 87.84 123.69 50.24 38.32
S2 482.48 10.13 88.34 125.81 53.01 38.67
S3 500.73 10.18 87.95 127.41 54.87 39.08
LSD (P = 0.05) 19.06 NS NS 1.39 1.76 0.41




